摘要:We consider the singularly perturbed nonlinear Schrödinger equation (NLS) with a potential that has local maxima and with a Berestycki-Lions type nonlinearity. By deriving a refined lower bound on the gradient of the functional, we are able to construct concentration solutions around the potential maxima. We also explain how this idea can be used to construct multiple clustering peak solutions to the $L^2$ constraint problem with a general nonlinearity.
报告时间:2025年3月19日14:00
腾讯会议:805 8437 7443(密码:0303)
报告人:张程翔,北京师范大学数学科学学院博士生导师,主要研究方向为变分法和非线性泛函分析,已在ARMA,CVPDE,IUMJ,JMPA,Nonlinearity等权威学术期刊上发表多篇学术论文。主持多项国家自然科学基金。